多項(xiàng)實(shí)驗(yàn)的卡方檢驗(yàn)示例

卡方分布的一種用途是用于多項(xiàng)式實(shí)驗(yàn)的假設(shè)檢驗(yàn)。為了了解這個(gè)假設(shè)檢驗(yàn)是如何工作的,我們將研究以下兩個(gè)例子。這兩個(gè)例子都通過(guò)相同的步驟來(lái)完成:

  1. 形成零假設(shè)和替代假設(shè)
  2. 計(jì)算檢驗(yàn)統(tǒng)計(jì)量
  3. 找到臨界值
  4. 決定是拒絕還是不拒絕我們的零假設(shè)。

示例1:公平硬幣

對(duì)于我們的第一個(gè)例子,我們想要看一枚硬幣。一枚公平的硬幣有1/2的概率出現(xiàn)頭部或尾部。我們折幣1000次,記錄總共580個(gè)頭和420個(gè)尾巴的結(jié)果。我們希望以95%的置信度檢驗(yàn)假設(shè),即我們翻轉(zhuǎn)的硬幣是公平的。更正式地說(shuō),零假設(shè)H是硬幣是公平的。由于我們正在比較硬幣折騰結(jié)果的觀察頻率與理想化公平硬幣的預(yù)期頻率,因此應(yīng)使用卡方檢驗(yàn)。

計(jì)算卡方統(tǒng)計(jì)量

我們首先計(jì)算這種情況下的卡方統(tǒng)計(jì)量。有兩個(gè)事件,頭部和尾部。頭部的觀察頻率為f=580,預(yù)期頻率為e=50%×1000=500。尾部的觀察頻率為f=420,預(yù)期頻率為e=500。

我們現(xiàn)在使用卡方統(tǒng)計(jì)量的公式,看到χ2=(f-e2/e婦科小知識(shí)圖片+(f-e2/e=802/500+(-80)2/500=25.6。

找到臨界值71 72

接下來(lái),我們需要找到適當(dāng)卡方分布的臨界值。由于硬幣有兩個(gè)結(jié)果,因此需要考慮兩個(gè)類別。自由度數(shù)少于類別數(shù):2-1=1。我們使用卡方d分配此自由度數(shù),請(qǐng)參見(jiàn)χ2=3.841。

拒絕還是不拒絕?

**,我們將計(jì)算的卡方統(tǒng)計(jì)量與表中的臨界值進(jìn)行比較。自25.6>3.841以來(lái),我們拒絕這是一個(gè)公平硬幣的零假設(shè)。

示例2:公平的死亡

公平的模具滾動(dòng)一個(gè),兩個(gè),三個(gè),四個(gè),五個(gè)或六個(gè)的概率等于1/6。我們滾動(dòng)模具600次,注意我們滾動(dòng)一次106次,兩次90次,三次98次,四次102次,五次100次和六次104次。我們希望以95%的置信度檢驗(yàn)假設(shè),即我們有一個(gè)公平的死亡。

計(jì)算卡方統(tǒng)計(jì)量

有六個(gè)事件,每個(gè)事件的預(yù)期頻率為1/6 x 600=100。觀測(cè)頻率分別為100 f 101 106、102 f 103 90、104 f 105 98、106 f 107 102、108 f 109 100、110 f 111 104,

我們現(xiàn)在使用卡方統(tǒng)計(jì)量的公式,看到χ116 2 117 117(118f f 119-120 e e 121)122 122 2 123/124 e e 125+(126f f 127-128 e e 129)e 122 122 122 2 123 123/124 e e e 125+(126f f f f 127-128 e e 129)130 2 131/2 131/132 e e 133+(134f f 135-136 e e e 133+(134f f f 135-136 e e 137)138 2 139/140 e e e 141++(142f f 143143-144 e e e 145>)2/e+(f-e2/e=1.6。

找到臨界值171 172

接下來(lái),我們需要找到適當(dāng)卡方分布的臨界值。由于模具有六類結(jié)果,自由度比這個(gè)少一個(gè):6-1=5。我們使用卡方分布獲得五個(gè)自由度,并看到χ2=11.071。

拒絕還是拒絕?

**,我們將計(jì)算的卡方統(tǒng)計(jì)量與表中的臨界值進(jìn)行比較。由于計(jì)算的卡方統(tǒng)計(jì)量stic為1.6小于我們的臨界值11.071,我們不能拒絕零假設(shè)。

科普_1